Structure Determination using NMR and IR Spectral Data

Click on a number to view the spectral data for each compound.

Data for each unknown includes: 1H NMR (splitting patterns included)
13C NMR
IR spectrum (KBr pellet or film)

Solvent peaks due to CDCl$_3$ are present at 7.2 ppm in the proton spectra and 77.0 ppm in the carbon spectra.

In the 1H NMR spectra, the phrase "exchanges" means that shaking the NMR solution with D$_2$O resulted in loss of the signal due to hydrogen/deuterium exchange.

Click here to learn about interpretation of spectral data.

<table>
<thead>
<tr>
<th></th>
<th>#1 C$_4$H$_6$O</th>
<th>#6 C8H${19}$N</th>
<th>#11 C6H${12}$O$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>#2</td>
<td>C$_3$H$_5$O$_2$Br</td>
<td>#7 C$_3$H$_7$OCl</td>
<td>#12 C$_3$H$_7$OCl</td>
</tr>
<tr>
<td>#3</td>
<td>C9H${12}$</td>
<td>#8 C$_6$H$_8$O$_2$</td>
<td>#13 C8H${11}$O$_2$Br</td>
</tr>
<tr>
<td>#4</td>
<td>C6H${10}$</td>
<td>#9 C$_6$H$_4$Cl$_2$</td>
<td>#14 C${10}$H${12}$O$_2$</td>
</tr>
<tr>
<td>#5</td>
<td>C$_8$H$_8$O$_2$</td>
<td>#10 C${18}$H${35}$N</td>
<td>#15 C9H${13}$NO</td>
</tr>
</tbody>
</table>
Interpretation of Data

Use the **molecular formula** to determine the degrees of unsaturation or double bond equivalents (rings or multiple bonds).

Most of the 1H spectra contain first-order splitting patterns; in cases where some peaks do not follow the $N+1$ rule, by process of elimination of other peaks, you can solve the problem. Look for the obvious first-order splitting patterns:

- ethyl pattern (triplet and quartet)
- isopropyl pattern (double and multiplet, which may resolve into a discernable heptet)
- methoxy groups on esters (singlet downfield from alkane region, approx. 3.5 ppm)
- methyl group adjacent to a carbonyl (approximately 2.0 ppm)
- aromatic signals along with at least 4 degrees of unsaturation indicates a benzene ring.

Examine the IR spectrum to determine the **functional groups** present in the unknown:

- For example, if the formula contains oxygen, you should be able to distinguish between an ether versus an alcohol (O-H stretch).
- If a carbonyl stretch is present, look for O-H stretch (acid) or N-H stretch (amide).
- Look for triple bonds at approximately 2200 cm$^{-1}$.
- Look for sp2 carbon-hydrogen frequencies above 3000 cm$^{-1}$ (alkenes, aromatic rings).

Remember, the number of peaks in the 13C spectrum indicates the number of different kinds of carbon atoms, the magnetically different carbon atoms. Some of the 13C spectra contain carbon-hydrogen splitting information labeled as a **multiplet**.

For example, a peak listed as 38.6, t means the peak is at 38.6 ppm and exists as a triplet.

- A quartet indicates there are three hydrogens attached to that carbon atom (CH$_3$ group).
- A triplet indicates there are 2 hydrogens attached to that carbon atom (CH$_2$ group).
- A doublet indicates there is one hydrogen attached to that carbon atom (CH group).
- A singlet indicates a quaternary carbon group.
1H NMR spectrum 13C NMR spectrum IR spectrum

#1 C$_4$H$_6$O

peak splitting below

3.72 t 2H
3.48 bs 1H (exchanges)
2.45 t 2H
2.08 s 1H

back to problems
$^1\text{H NMR spectrum}$ $^{13}\text{C NMR spectrum}$ IR spectrum

#1 $\text{C}_4\text{H}_6\text{O}$
1H NMR spectrum 13C NMR spectrum IR spectrum

#1 C_4H_6O

back to problems
1H NMR spectrum 13C NMR spectrum IR spectrum
#2 C₃H₆O₂Br
<back to problems>

peak splitting below

1H very broad (exchanges)
#2 C$_3$H$_5$O$_2$Br

^{1}H NMR spectrum ^{13}C NMR spectrum IR spectrum

178.5, s 38.5, t 24.3, t
#2 $\text{C}_3\text{H}_5\text{O}_2\text{Br}$
1H NMR spectrum 13C NMR spectrum IR spectrum

3 C$_9$H$_{12}$

peak splitting below

back to problems
1H NMR spectrum 13C NMR spectrum IR spectrum

#3 C₉H₁₂

back to problems
#4 C₆H₁₀

all singlets!

back to problems
1H NMR spectrum
13C NMR spectrum
IR spectrum

#4 C₆H₁₀

back to problems
#4 C₆H₁₀

IR spectrum

Transmittance

Wavenumber (cm⁻¹)

3064 2985 2790 1692 1372

3500 3000 2500 2000 1500 1000
#5 C₈H₆O₂

all singlets!
#5 C₈H₆O₂

back to problems
#5
C₈H₆O₂

IR spectrum
^{1}H NMR spectrum ^{13}C NMR spectrum IR spectrum

$C_{8}H_{19}N$

back to problems

peak splitting below
#6 \(\text{C}_8\text{H}_{19}\text{N} \)

\begin{align*}
49.8, t & \\
32.3, t & \\
20.4, t & \\
13.9, q & \\
\end{align*}
1H NMR spectrum 13C NMR spectrum IR spectrum

#6 C$_8$H$_{19}$N

back to problems
#7 C$_3$H$_7$OCl

peak splitting below
1H NMR spectrum 13C NMR spectrum IR spectrum

#7 C$_3$H$_7$OCl

back to problems
#7 C$_3$H$_7$OCl
1H NMR spectrum 13C NMR spectrum IR spectrum

#8 C$_6$H$_6$O$_2$

peak splitting below
1H NMR spectrum

13C NMR spectrum

IR spectrum

#8 $\text{C}_6\text{H}_6\text{O}_2$

back to problems
#8 C₆H₆O₂

IR spectrum

Transmittance

Wavenumber (cm⁻¹)

335

1518

1364

1188

743
#9 C₆H₄Cl₂

peak splitting below
1H NMR spectrum
13C NMR spectrum
IR spectrum

#9 C₆H₄Cl₂

back to problems
#9 C₆H₄Cl₂

IR spectrum

Transmittance

Wavenumber (cm⁻¹)

3500 3000 2500 2000 1500 1000

907 1458 1127 746
#10 \(C_{16}H_{35}N \)

peak splitting below
#10 \(\text{C}_{16}\text{H}_{35}\text{N} \)

back to problems
#10 C_{16}H_{35}N

IR spectrum

Transmittance

Wavenumber (cm$^{-1}$)

- 3727
- 2929
- 2854
#11 C\(_5\)H\(_{12}\)O\(_2\)

all singlets!
#11 $C_5H_{12}O_2$
#11 $\text{C}_5\text{H}_{12}\text{O}_2$

IR spectrum
\[\text{\(^1H\) NMR spectrum} \quad \text{\(^{13}C\) NMR spectrum} \quad \text{IR spectrum} \]

\#12 C\(_3\)H\(_7\)OCl

\text{peak splitting below}

1H (exchange)
\(\text{\(^{1}H \) NMR spectrum} \) \(\text{\(^{13}C \) NMR spectrum} \) \(\text{IR spectrum} \)

\#12 \(\text{C}_3\text{H}_7\text{OCl} \)

back to problems
#12 \(\text{C}_3\text{H}_7\text{OCl} \)

Back to problems
#13 C$_6$H$_{11}$O$_2$Br

peak splitting below
#13 C₆H₁₁O₂Br

1H NMR spectrum
13C NMR spectrum
IR spectrum

#13 C₆H₁₁O₂Br

back to problems
^{1}H NMR spectrum

^{13}C NMR spectrum

IR spectrum

#14 $C_{10}H_{12}O_{2}$

back to problems

peak splitting below
\[
\text{1H NMR spectrum} \quad \text{13C NMR spectrum} \quad \text{IR spectrum}
\]

\[\text{#14 } \text{C}_{10}\text{H}_{12}\text{O}_2\]

\[\text{back to problems}\]
#14 $C_{10}H_{12}O_2$

back to problems
#15 C$_9$H$_{13}$NO

Back to problems

Peak splitting below
#15 C$_9$H$_{13}$NO

1H NMR spectrum

13C NMR spectrum

IR spectrum

back to problems
#15 C\textsubscript{9}H\textsubscript{13}NO