1. a. $f'(x) = 3x^2 + 3x - 36 = 0$, Critical values: $x = -4, 3$
 Increasing: $(-\infty, -4) \cup (3, \infty)$
 Decreasing: $(-4, 3)$
 b. Local Max = 111 @ $x = -4$, Local Min = -60.5 @ $x = 3$
 c. $f'(x) = 6x + 3 = 0$, Critical value: $x = -\frac{1}{2}$
 Concave up: $(-1/2, \infty)$
 Concave down: $(-\infty, -1/2)$
 d. $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$
 $x_1 = 0$
 $x_2 = 0.19444444$
 $x_3 = 0.19625914$
 $x_4 = 0.19625933$
 $x_5 = 0.19625933$
 The root is 0.19625933.
 e. The root is 0.19625933.

2. C.V.'s: Local MIN @ $x = 0$, Local MIN @ $x = -\frac{3 - \sqrt{5}}{2}$, Local MAX @ $x = -\frac{3 + \sqrt{5}}{2}$

3. a. Max value of $\frac{1}{4}$ at $x = 2$, Min value of 0 at $x = 0$.
 b. Max value of 2π at $\theta = 2\pi$, Min value of 0 at $\theta = 0$.

4. intercept (0,0)
 H.A. $y = 0$: as $x \to \infty$, $f(x) \to 0$, but as $x \to -\infty$, $f(x) \to \infty$
 Max $(2, \frac{4}{e^2})$ Min $(0, 0)$ Inflection points $x = 2 \pm \sqrt{2}$, which are marked below.
5. Set \(y'' = 0 \), to find inflection point at \((2, -16)\), \(y'(2) = -12 = \text{slope of tangent line} \)
So line tangent to \(y \) at \((2, -16)\) is \(y = -12x + 8 \)

6. \(f'(x) = \frac{1}{x} \), so \(f'(1) = 1 \) and the linear approximation is \(L(x) = x - 1 \).
\(\ln(0.98) \approx L(0.98) = 0.98 - 1 = -0.02 \).

7. Since \(f(x) \) is differentiable on \([-1, 2]\), it is also continuous on \([-1, 2]\), thus \(f \) satisfies the conditions of the Mean Value Theorem. Therefore, there exists \(c \) in the interval \((-1, 2)\), such that
\[
\frac{f(2) - f(-1)}{2 - (-1)} = \frac{5 - (-1)}{3} = \frac{6}{3} = 2.
\]
This means that at \(x = c \), the slope of the line tangent is 2.
Which is the same slope of the line \(y=2x \)

8. See figure labeled with the unknown lengths →
The constraint equation: \(xy = 30 \) which means \(y = \frac{30}{x} \).
The objective function to be minimize is:
\[
A = (x + 2)(y + 4) \quad \text{with the substitution: } \quad y = \frac{30}{x}.
\]
\[
A = (x + 2)\left(\frac{30}{x} + 4\right) = 30 + 4x + \frac{60}{x} + 8
\]
\[
A = 38 + 4x + \frac{60}{x}
\]
And the derivative: \(A' = 4 - \frac{60}{x^2} = 0 \) gives the solution, \(x = \sqrt{15} \) and \(y = \frac{30}{\sqrt{15}} \).
So the dimensions of the page are \(\left(\sqrt{15} + 2\right) \text{ inches} \) by \(\left(\frac{30}{\sqrt{15}} + 4\right) \text{ inches} \),
giving a minimum area of 69.98 square inches.

9. a. 0 b. 10.5 c. \(e^0 = 1 \)

10. Constraint: \(P = 1500 = 3x + y \implies y = 1500 - 3x \)
Objective fctn: \(A = xy = x(1500 - 3x) \)
Set \(A'(x) = 0 \) and solve….. \(x = 250 \text{ft}, y = 750 \text{ft} \)

11.

Graphical representation...

12. \(f(x) \) has a point of inflection at \((0, f(0))\). \(f''(x) \) is negative for \(x<0 \), and positive for \(x>0 \).

13. We are finding the root of \(x^3 - 2 = 0 \), so \(f(x) = x^3 - 2 \)

In calculator: \(y1 = x^3 - 2 \), \(y2 = f'(x) = 3x^2 \)

In calculator: \(1 \rightarrow x \) ENTER, \(x - y_1 / y_2 \rightarrow x \) ENTER, ENTER, ….

\(x_1 = 1 \)
\(x_4 = 1.2599 \)

\(x_2 = 1.3333 \) \(x_3 = 1.2599 \) This is the value of \(\sqrt[3]{2} \) correct to 4 decimals.

\(x_3 = 1.2639 \)

14. a. \(x_1 = -1 \) is a “bad seed” in that the function happens to have a local minimum at \(x = -1 \).

Thus Newton’s method does not work since the horizontal tangent does not produce an \(x \)-intercept.

In other words, since \(f'(1) = 0 \), you cannot compute \(x_2 \), since you cannot divide by 0 in the calculation: \(x_2 = -1 - \frac{f(-1)}{f'(-1)} \).

b. We are finding the root of \(x^3 - 3x + 6 = 0 \), so \(f(x) = x^3 - 3x + 6 \)

In calculator: \(y1 = x^3 - 3x + 6 \), \(y2 = f'(x) = 3x^2 - 3 \)

In calculator: \(-2 \rightarrow x \) ENTER, \(x - y_1 / y_2 \rightarrow x \) ENTER, ENTER, ….

\(x_1 = -2 \)
\(x_4 = -2.355309 \)

\(x_2 = -2.444444 \) \(x_3 = -2.355301 \) This is the root correct to 6 decimals.

\(x_3 = -2.359158 \)

15. a. \(dy = \frac{1}{2\sqrt{x}} \) \(dx \)

b. \(dy = \frac{1}{2\sqrt{25}}(0.03) = 0.003 \)

c. \(\sqrt{25.03} = \sqrt{25} + \Delta y \approx 5 + dy = 5 + 0.003 = 5.003 \), so \(\sqrt{25.03} \approx 5.003 \)

16. a. \(f(x) \) is continuous and differentiable on \([-1, 2]\).

b. Set \(f'(x) = \frac{f(2) - f(-1)}{2 - (-1)} \rightarrow \frac{2}{(x + 2)^2} = \frac{1}{2} \)

Solve for \(x \): \(x = 0, -4 \) \(c = 0 \) is in the interval \([-1, 2]\).