1. Write complete balanced nuclear equations for the following processes.
 a) Radium-226 decays by alpha particle emission.
 \[{\text{Ra}}^{226}_{\text{88}} \rightarrow {\text{Rn}}^{222}_{\text{86}} + \alpha \text{He} \]
 b) Scandium-43 is produced by electron capture.
 \[{\text{Ti}}^{43}_{\text{22}} + \beta \rightarrow {\text{Sc}}^{43}_{\text{21}} \]
 c) Selenium-91 decays into selenium-90.
 \[{\text{Se}}^{91}_{\text{34}} \rightarrow {\text{Se}}^{90}_{\text{34}} + \beta \text{e} \]

2. Which of the following nuclides are likely to radioactive and which are likely to be stable. Explain your
 choice and in the case of radioactivity predict the most likely mode of radioactive decay.

 (a) Nitrogen-12
 \[{\text{N}}^{12}_{7} \]
 \[\frac{Z}{A} = \frac{7}{12} \quad \text{too low} \]
 \[\beta \rightarrow \beta \text{e} + 0 \text{n} \]

 (b) Lead-208
 \[{\text{Pb}}^{208}_{82} \]
 both \(N \) \& \(Z \) magic \#'s \quad \boxed{\text{stable}}

 (c) Thorium-233
 \[{\text{Th}}^{\alpha}_{\text{234}} \]
 \[Z > 83 \quad \boxed{\text{radioactive}} \]
3. The half-life of cobalt-60 is 5.26 years.
 (a) What is the rate constant for the decay of cobalt-60?

 \[k = \frac{0.693}{t_{1/2}} = \frac{0.13175}{y^{-1}} \]

 (b) How much of a 71.8 g sample of cobalt-60 remains after eighteen (18.00) years?

 \[\ln \left(\frac{N_t}{N_0} \right) = -k t \]

 \[\ln \left(\frac{N_t}{71.8 g} \right) = -(0.13175 \text{ yr}^{-1})(18.00 \text{ yr}) \]

 \[\ln \left(\frac{N_t}{71.8 g} \right) = -2.3175 \]

 \[\frac{N_t}{71.8 g} = 0.0734 \]

 \[\left[\frac{N_t}{71.8 g} \right]_{18.00 \text{ yr}} \]

4. 131I (as Na131I) is used to treat hyperthyroid disease. It decays to Xenon by first order kinetics. The half-life of 131I is 8.0 days. If you are given 3 ng of Na131I, how many days will it take for 99.99% of it to decay, that is, for there to be only 0.003 ng left? (8 pts)

 \[\ln \left(\frac{[^{131}\text{I}]_{\text{start}}}{[^{131}\text{I}]_{\text{end}}} \right) = kt \]

 \[t = \frac{\ln 2}{k} = \frac{0.693}{8.0 \text{ days}} = 8.66 \times 10^{-2} \text{ days}^{-1} \]

 \[\ln \left(\frac{[^{131}\text{I}]_{\text{start}}}{[^{131}\text{I}]_{\text{end}}} \right) = \ln \left(\frac{3 \text{ ng}}{0.003 \text{ ng}} \right) = \ln 1000 = 6.91 = kt = (8.66 \times 10^{-2} \text{ days}^{-1})t \]

 \[t = 79.8 \text{ days} \]

5. The atomic mass of 127I is 126.9004 g/mol. Calculate the nuclear binding energy of this nucleus (in kJ/mol). The mass of a proton is 1.007825 g/mol and the mass of a neutron is 1.008665 g/mol.

 127I has 53 protons and 74 neutrons:

 \[\text{mass} = 53(1.007825) + 74(1.008665) = 128.055935 \]

 \[\Delta_{\text{mass}} = 126.9004 \text{ g} - 128.055935 = -1.15535 \text{ g} \text{ or } -1.15535 \times 10^{-3} \text{ kg} \]

 \[E = mc^2 = (-1.15535 \times 10^{-3} \text{ kg})(3.00 \times 10^8 \text{ m/s})^2 \]

 \[E = -1.0399815 \times 10^{14} \text{ J/mol} \text{ or } -1.04 \times 10^{11} \text{ kJ/mol} \]
6. Given the information below, answer the following question:

Mass of proton 1.00728 amu Mass of neutron 1.00866 amu Mass of electron 5.485799 x 10^{-4} amu
Mass of \(^{19}F \) = 18.998403 amu/atom Velocity of light \(c \) = 2.998 x 10^8 m s^{-1}
Mass-energy conversion 1 amu = 931.5 MeV

a) Calculate the mass deficiency of \(^{19}F \) in amu/atom.

\[
\text{Theoretical mass} = 9 (1.00728) + 10 (1.00866) + 9 (0.0005485799) \text{ amu/atom} \\
\text{Theoretical mass} = 19.157057 \text{ amu/atom} \\
\text{Mass deficiency} = \text{Theoretical mass} - \text{Actual mass} \\
\text{Mass deficiency} = 19.157057 \text{ amu/atom} - 18.998403 \text{ amu/atom} = 0.158654 \text{ amu/atom}
\]

b) Determine the mass deficiency of \(^{19}F \) in g mol^{-1}.

\[
0.158654 \text{ g mol}^{-1}
\]

c) Calculate the binding energy (BE) of \(^{19}F \) in kJ mol^{-1}.

\[
\text{BE} = \Delta mc^2 \\
\text{BE} = (0.158654 \text{ g/mol}) (2.998 x 10^8 \text{ m s}^{-1})^2 (1 \text{ kg/103 g}) \\
\text{BE} = 1.431 \times 1013 \text{ kg m}^2 \text{s}^{-2} \text{ mol}^{-1} \\
\text{BE} = 1.431 \times 1013 \text{ J mol}^{-1} \\
\text{BE} = 1.431 \times 1010 \text{ kJ mol}^{-1}
\]

d) Calculate the binding energy of \(^{19}F \) in MeV/atom

\[
\text{Since 1 amu} = 931.5 \text{ MeV}, \\
(0.158654 \text{ amu/atom})(931.5 \text{ MeV/amu}) = 147.8 \text{ MeV/atom}
\]

e) Calculate the binding energy of \(^{19}F \) per nucleon in MeV/nucleon.

\[
19 \text{ nucleons: } (147.8 \text{ MeV/atom})(1 \text{ atom/19 nucleons}) = 7.778 \text{ MeV/nucleon}
\]

7. One component of oseltamivir phosphate, otherwise known as Tamiflu®, is pictured at right. This is one of the drugs that the World Health Organization has identified as an effective treatment for the H5N1 strain of influenza A, which is more commonly referred to as “bird flu”. (10 pts)

\[
\text{Choices to consider: alkane, alkene, alkyne, aromatic hydrocarbon, alcohol, ether, carboxylic acid, aldehyde, ketone, ester, amine, amide, amino acid.}
\]

Identify the functional groups indicated by the letters

A. _____Amide_______ B. _____Ester_______ C. _____Alkene___

D. ___Ether_____ E. _____Amine____
8. Draw the 4 isomers in line notation of C_4H_8 including geometric isomers and name them

- 2-methyl-1-propene
- Cyclobutane
- 1-butene
- Methylocyclopropane
- Trans-2-butene
- Cis-2-butene

9. Name the following compounds (6 pts)

- Name ___4-methyl-2-propyl-1-hexene___
- Name ___3,7-dichloro-3,6,6trimethyldecane___

10. From each of the following pairs, choose the nuclide that is radioactive. (One is known to be radioactive, the other stable.)

 a) $^{80}_{34}\text{Se}$ or $^{81}_{34}\text{Se}$

 $^{81}_{34}\text{Se}$ Even-odd nucleus less stable than even-even nucleus.

 b) $^{209}_{83}\text{Bi}$ or $^{210}_{83}\text{Bi}$

 $^{210}_{83}\text{Bi}$ Odd-odd nucleus is unstable.

11. Briefly explain why “magic numbers” are important for understanding nuclear structures, i.e., define “magic number”.

 Nuclei with a “magic number” of neutrons or protons have additional stability relative to their nuclei.
12. Write the IUPAC name for each of the following compounds:

3-methyl-4-ethyl octane 1, 2-dimethyl cyclopentane 3, 4, 4-trimethyl-7-isopropyl decane

3, 4-dimethyl-7-cyclopentyl nonane 2, 2, 3, 3, 5-pentamethyl-4-ethyl heptanes

Complete the following reactions:

- \[
\begin{align*}
\text{H}_3\text{C} & \quad \text{H}_2\text{C} \\
\text{C} & \quad \text{C} \\
\text{H}_2\text{C} & \quad \text{CH}_3 \\
\text{CH}_3 & \quad \text{H}_2\text{C} \\
\text{H} & \quad \text{C} \\
\text{C} & \quad \text{H}_2\text{C} \\
\text{H}_3\text{C} & \quad \text{H}_2\text{C} \\
\text{H}_2\text{C} & \quad \text{H}_2\text{C} \\
\end{align*} + \text{H}_2\text{O} \quad \xrightarrow{\text{H}^+} \quad \begin{align*}
\text{H}_3\text{C} & \quad \text{H}_2\text{C} \\
\text{C} & \quad \text{C} \\
\text{H}_2\text{C} & \quad \text{CH}_3 \\
\text{CH}_3 & \quad \text{H}_2\text{C} \\
\text{H} & \quad \text{C} \\
\text{C} & \quad \text{H}_2\text{C} \\
\text{H}_3\text{C} & \quad \text{H}_2\text{C} \\
\text{H}_2\text{C} & \quad \text{H}_2\text{C} \\
\end{align*}

- \[\begin{align*}
\text{Br}_2 & \quad \text{CCl}_4 \\
\text{CH}_3 & \quad \text{CH}_3 \\
\end{align*} \quad \xrightarrow{\text{Br}_2/\text{CCl}_4} \quad \begin{align*}
\text{Br} & \quad \text{Br} \\
\text{Br} & \quad \text{Br} \\
\text{CH}_3 & \quad \text{CH}_3 \\
\end{align*} \]

- \[\begin{align*}
\text{H}_2\text{C} & \quad \text{H}_2\text{C} \\
\text{C} & \quad \text{C} \\
\text{CH}_3 & \quad \text{H}_2\text{C} \\
\text{H}_2\text{C} & \quad \text{H}_2\text{C} \\
\text{H}_3\text{C} & \quad \text{H}_2\text{C} \\
\text{H}_2\text{C} & \quad \text{H}_2\text{C} \\
\end{align*} \quad \xrightarrow{\text{HCl}} \quad \begin{align*}
\text{H}_3\text{C} & \quad \text{H}_2\text{C} \\
\text{C} & \quad \text{C} \\
\text{H}_2\text{C} & \quad \text{H}_2\text{C} \\
\text{H}_3\text{C} & \quad \text{H}_2\text{C} \\
\text{H}_2\text{C} & \quad \text{H}_2\text{C} \\
\end{align*} \]

- \[\begin{align*}
\text{Cl} & \quad \text{Cl} \\
\text{C} & \quad \text{C} \\
\text{Cl} & \quad \text{Cl} \\
\text{C} & \quad \text{C} \\
\text{H}_2\text{C} & \quad \text{H}_2\text{C} \\
\text{H}_2\text{C} & \quad \text{H}_2\text{C} \\
\end{align*} \quad \xrightarrow{\text{H}_2} \quad \begin{align*}
\text{Cl} & \quad \text{Cl} \\
\text{C} & \quad \text{C} \\
\text{H}_2\text{C} & \quad \text{H}_2\text{C} \\
\text{H}_2\text{C} & \quad \text{H}_2\text{C} \\
\text{H}_2\text{C} & \quad \text{H}_2\text{C} \\
\end{align*} \]
13. Write the full and condensed structural formulas for the following substances:

- 3, 4-dimethyl-4-ethyl octane
 ![Structural formula of 3, 4-dimethyl-4-ethyl octane](image)
- 4-t-butyl heptane
 ![Structural formula of 4-t-butyl heptane](image)
- cis-1, 3-diethyl cyclohexane
 ![Structural formula of cis-1, 3-diethyl cyclohexane](image)
- 3-isopropyl hexane
 ![Structural formula of 3-isopropyl hexane](image)
- 1, 1-dimethyl cyclopentane
 ![Structural formula of 1, 1-dimethyl cyclopentane](image)
- 3, 4, 5, 6- tetramethyl nonane
 ![Structural formula of 3, 4, 5, 6- tetramethyl nonane](image)

Write the IUPAC name for each of the following compounds.

- 2-methyl-2-butene
 ![Structural formula of 2-methyl-2-butene](image)
- 3, 4-dibromo-1-cyclohexene
 ![Structural formula of 3, 4-dibromo-1-cyclohexene](image)
- 4, 5, 6-trimethyl-2-octene
 ![Structural formula of 4, 5, 6-trimethyl-2-octene](image)
- 4-bromo-3-methyl-1-hexyne
 ![Structural formula of 4-bromo-3-methyl-1-hexyne](image)
- 5, 5-dichloro-3-nonene
 ![Structural formula of 5, 5-dichloro-3-nonene](image)
- 1, 1-dichloro-2-ethyl cyclopentane
 ![Structural formula of 1, 1-dichloro-2-ethyl cyclopentane](image)
1. Explain, based on the appropriate IMFs, why the melting points and boiling points of alkenes and alkynes are so low.
Since the bonding in these molecules is non-polar covalent, the forces between molecules are weak dispersion forces and the crystals they form are molecular crystals with weak interactions between lattice points. Weaker forces require less energy to overcome. Therefore, the melting points and boiling points are lower.

2. Explain why double and triple carbon-carbon bonds are planar while a single C-C bond is not.
For single bonds, carbon forms sp³ hybrid orbitals that arrange themselves 109.5° away in three-dimensional space. Carbon in a double bond forms sp² hybrid orbital and these are arranged at 120° on a plane while carbon in a triple bond undergoes sp hybridization and the resulting orbitals are 180° apart, in a line.

3. Write the IUPAC name for each of the following compounds.

 - 2-methyl-2-butene
 - 3, 4-dibromo-1-cyclohexene
 - 4, 5, 6-trimethyl-2-octene
 - 4-bromo-3-methyl-1-hexyne
 - 5, 5-dichloro-3-nonene
 - 1, 1-dichloro-2-ethyl cyclopentane